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Abstract. The ROMIO implementation of the MPI-IO standard pro-
vides a portable infrastructure for use on top of any number of different
underlying storage targets. These targets vary widely in their capabil-
ities, and in some cases additional effort is needed within ROMIO to
support all MPI-IO semantics. The MPI-2 standard defines a class of
file access routines that use a shared file pointer. These routines require
communication internal to the MPI-IO implementation in order to allow
processes to atomically update this shared value. We discuss a technique
that leverages MPI-2 one-sided operations and can be used to implement
this concept without requiring any features from the underlying file sys-
tem. We then demonstrate through a simulation that our algorithm adds
reasonable overhead for independent accesses and very small overhead
for collective accesses.

1 Introduction

MPI-IO [1] provides a standard interface for MPI programs to access storage in a
coordinated manner. Implementations of MPI-IO, such as the portable ROMIO
implementation [2] and the implementation for AIX GPFS [3], have aided in the
widespread availability of MPI-IO. These implementations include a collection
of optimizations [4, 3, 5] that leverage MPI-IO features to obtain higher perfor-
mance than would be possible with the less capable POSIX interface [6].

One feature that the MPI-IO interface provides is shared file pointers. A
shared file pointer is an offset that is updated by any process accessing the file
in this mode. This feature organizes accesses to a file on behalf of the application
in such a way that subsequent accesses do not overwrite previous ones. This is
particularly useful for logging purposes: it eliminates the need for the application
to coordinate access to a log file.

Obviously coordination must still occur; it just happens implicitly within
the I/O software rather than explicitly in the application. Only a few historical
file systems have implemented shared file pointers natively (Vesta [7], PFS [8],
CFS [9], SPIFFI [10]) and they are not supported by parallel file systems being
deployed today. Thus, today shared file pointer access must be provided by the
MPI-IO implementation.



This paper discusses a novel method for supporting shared file pointer access
within a MPI-IO implementation. This method relies only on MPI-1 and MPI-2
communication functionality and not on any storage system features, making it
portable across any underlying storage. Section 2 discusses the MPI-IO interface
standard, the portions of this related to shared file pointers, and the way shared
file pointer operations are supported in the ROMIO MPI-IO implementation.
Section 3 describes our new approach to supporting shared file pointer operations
within an MPI-IO implementation. Two algorithms are used, one for independent
operations and another for collective calls. Section 4 evaluates the performance
of these two algorithms on synthetic benchmarks. Section 5 concludes and points
to future work in this area.

2 Background

The MPI-IO interface standard provides three options for referencing the loca-
tion in the file at which I/O is to be performed: explicit offsets, individual file
pointers, and shared file pointers. In the explicit offset calls the process provides
an offset that is to be used for that call only. In the individual file pointer calls
each process uses its own internally stored value to denote where I/O should
start; this value is referred to as a file pointer. In the shared file pointer calls
each process in the group that opened the file performs I/O starting at a single,
shared file pointer.

Each of these three ways of referencing locations have both independent (non-
collective) and collective versions of read and write calls. In the shared file pointer
case the independent calls have the shared suffix (e.g., MPI File read shared),
while the collective calls have the ordered suffix (e.g., MPI File read ordered).
The collective calls also guarantee that accesses will be ordered by rank of the
processes. We will refer to the independent calls as the shared mode accesses and
the collective calls as the ordered mode accesses.

2.1 Synchronization of Shared File Pointers in ROMIO

The fundamental problem in supporting shared file pointers at the MPI-IO layer
is that the implementation never knows when some process is going to perform a
shared mode access. This information is important because the implementation
must keep a single shared file pointer value somewhere, and it must access and
update that value whenever a shared mode access is made by any process.

When ROMIO was first developed in 1997, most MPI implementations pro-
vided only MPI-1 functionality (point-to-point and collective communication),
and these implementations were not thread safe. Thread safety makes it easier
to implement algorithms that rely on nondeterministic communication, such as
shared-mode accesses, because a separate thread can be used to wait for com-
munication related to shared file pointer accesses. Without this capability, a
process desiring to update a shared file pointer stored on a remote process could
stall indefinitely waiting for the remote process to respond. The reason is that



the implementation could check for shared mode communication only when an
MPI-IO operation was called. These constraints led the ROMIO developers to
look for other methods of communicating shared file pointer changes.

Processes in ROMIO use a second hidden file containing the current value for
the shared file pointer offset. A process reads or writes the value of the shared
file pointer into this file before carrying out I/O routines. The hidden file acts
as a communication channel among all the processes. File system locks serialize
access and prevent simultaneous updates to the hidden file. This approach works
well as long as the file system meets two conditions:

1. The file system must support file locks
2. The file system locks must prevent access from other processes, and not just

from other file accesses in the same program.

Unfortunately, several common file systems do not provide file system locks
(e.g., PVFS, PVFS2, GridFTP) and the NFS file system provides advisory lock
routines but makes no guarantees that locks will be honored across processes.
On file systems such as these, ROMIO cannot correctly implement shared file
pointers using the hidden file approach and hence disables support for shared
file pointers. For this reason a portable mechanism for synchronizing access to
a shared file pointer is needed that does not rely on any underlying storage
characteristics.

3 Synchronization with One-Sided Operations

The MPI-2 specification adds a new set of communication primitives, called the
one-sided or remote memory access (RMA) functions, that allow one process
to modify the contents of remote memory without the remote process inter-
vening. These passive target operations provide the basis on which to build a
portable synchronization method within an MPI-IO implementation. This gen-
eral approach has been used in a portable atomic mode algorithm [11]. Here we
extend that approach to manage a shared file pointer and additionally to address
efficient ordered mode support.

MPI-2 one-sided operations do not provide a way to atomically read and
modify a remote memory region. We can, however, construct an algorithm based
on existing MPI-2 one-sided operations that lets a process perform an atomic
modification. In this case, we want to serialize access to the shared file pointer
value.

Before performing one-sided transfers, a collection of processes must first
define a window object. This object contains a collection of memory windows,
each associated with the rank of the process on which the memory resides. Af-
ter defining the window object, MPI processes can then perform put, get, and
accumulate operations into the memory windows of the other processes.

MPI passive target operations are organized into access epochs that are
bracketed by MPI Win lock and MPI Win unlock calls. Clever MPI implemen-
tations [12] will combine all the data movement operations (puts, gets, and ac-
cumulates) into one network transaction that occurs at the unlock. The MPI-2



standard allows implementations to optimize RMA communication by carrying
out operations in any order at the end of an epoch. Implementations take ad-
vantage of this fact to achieve much higher performance [12]. Thus, within one
epoch a process cannot read a byte, modify that value, and write it back be-
cause the standard makes no guarantee about the order of the read-modify-write
steps. This aspect of the standard complicates, but does not prevent, the use of
one-sided to build our shared file pointer support.

. . .

sharedfp

waitflag[N]

Process 0 Process 1 Process N−1

. . .

shfp window
object

Fig. 1. Creation of MPI windows

Our algorithms operate by using the following data structure. We define a
window object with an N-byte waitflag array and an MPI Offset-sized sharedfp,
both residing on a single process (Figure 1). In our discussion we will assume
that this data structure is stored on process 0, but for multiple files being ac-
cessed in shared file pointer mode, these structures could be distributed among
different processes. This data structure is used differently for shared mode than
for ordered mode access. We will discuss each in turn.

3.1 Shared Mode Synchronization

The MPI-2 standard makes no promises as to the order of concurrent shared
mode accesses. Additionally, the implementation does not need to serialize access
to the file system, only the value of the shared file pointer. After a process updates
the value of the file pointer, it can carry out I/O while the remaining processes
attempt to gain access to the shared file pointer. This approach minimizes the
time during which any one process has exclusive access to the shared file pointer.

In our shared mode approach, we use the waitflag array to synchronize
access to the shared file pointer. Figure 2 gives pseudocode for acquiring the
shared file pointer, and Figure 3 demonstrates how we update the shared file
pointer value.

Each byte in the waitflag array corresponds to a process. A process will
request a lock by putting a 1 in the byte corresponding to its rank in the com-
municator used to open the file. Doing so effectively adds it to the list of processes
that want to access the shared file pointer. In the same access epoch the process
gets the remaining N-1 bytes of waitflag and the sharedfp value. This com-
bination effectively implements a test and set. If a search of waitflag finds no



val = 1; /* add self to waitlist */
MPI_Win_lock(MPI_LOCK_EXCLUSIVE , homerank , 0, waitlistwin );
MPI_Get(waitlistcopy , nprocs -1, MPI_BYTE , homerank , FP_SIZE , 1,

waitlisttype , waitlistwin );
MPI_Put (&val , 1, MPI_BYTE , homerank , FP_SIZE + myrank , 1, MPI_BYTE ,

waitlistwin );
MPI_Get(fpcopy , 1, fptype , homerank , 0, 0, fptype , waitlistwin );
MPI_Win_unlock(homerank , waitlistwin );

/* check to see if lock is already held */
for (i=0; i < nprocs -1 && waitlistcopy[i] == 0; i++);
if (i < nprocs - 1) {

/* wait for notification */
MPI_Recv (&fpcopy , 1, fptype , MPI_ANY_SOURCE , WAKEUPTAG , comm ,

MPI_STATUS_IGNORE );
}

Fig. 2. MPI pseudocode for acquiring access to the shared file pointer.

other 1 values, then the process has permission to access the shared file pointer,
and it already knows what that value is without another access epoch.

In this case the process saves the current shared file pointer value locally
for subsequent use in I/O. It then immediately performs a second access epoch
(Figure 3). In this epoch the process updates sharedfp, puts a zero in its cor-
responding waitflag location, and gets the remainder of the waitflag array.
Following the access epoch the process searches the remainder of waitflag. If
all the values are zero, then no processes are waiting for access. If there is a 1
in the array, then some other process is waiting. For fairness the first rank after
the current process’s rank is selected to be awakened, and a point-to-point send
(MPI Send) is used to notify the process that it may now access the shared file
pointer. The contents of the send is the updated shared file pointer value; this
optimization eliminates the need for the new process to reread sharedfp. Once
the process has released the shared file pointer in this way, it performs I/O using
the original, locally-stored shared file pointer value. Again, by moving I/O after
the shared file pointer update, we minimize the length of time the shared file
pointer is held by any one process.

If during the first access epoch a process finds a 1 in any other byte, some
other process has already acquired access to the shared file pointer. The re-
questing process then calls MPI Recv with MPI ANY SOURCE to block until the
process holding the shared file pointer notifies it that it now has permission to
update the pointer and passes along the current value. It is preferable to use
point-to-point operations for this notification step, because they allow the un-
derlying implementation to best manage making progress. We know, in the case
of the sender, that the process we are sending to has posted, or will very soon
post, a corresponding receive. Likewise, the process calling receive knows that
very soon some other process will release the shared file pointer and pass it to
another process. The alternative, polling using one-sided operations, has been
shown less effective [11].



val =0; /* remove self from waitlist */
MPI_Win_lock(MPI_LOCK_EXCLUSIVE , homerank , 0, waitlistwin );
MPI_Get(waitlistcopy , nprocs -1, MPI_BYTE , homerank , FP_SIZE , 1,

waitlisttype , waitlistwin );
MPI_Put (&val , 1, MPI_BYTE , homerank , FP_SIZE + myrank , 1,

MPI_BYTE , waitlistwin );
MPI_PUT (&fpcopy , 1, fptype , homerank , 0, 1, fptype , waitlistwin );
MPI_Win_unlock(homerank , waitlistwin );

for (i=0; i < nprocs -1 && waitlistcopy[i] == 0; i++);
if (i < nprocs - 1) {

int nextrank = myrank;

/* find the next rank waiting for the lock */
while (nextrank < nprocs -1 && waitlistcopy[nextrank] == 0) nextrank ++;
if (nextrank < nprocs - 1) {

nextrank ++; /* nextrank is off by one */
}
else {

nextrank = 0;
while (nextrank < myrank && waitlistcopy[nextrank] == 0) nextrank ++;

}
/* notify next rank with new value of shared file pointer */
MPI_Send (&fpcopy , 1, fptype , nextrank , WAKEUPTAG , comm);

}

Fig. 3. MPI pseudocode for updating shared file pointer and (if needed) waking up the
next process.

3.2 Ordered Mode Synchronization

Ordered mode accesses are collective; in other words, all processes participate
in them. The MPI-IO specification guarantees that accesses in ordered mode
will be ordered by rank for these calls: the I/O from a process with rank N
will appear in the file after the I/O from all processes with a lower rank (in the
write case). However, the actual I/O need not be carried out sequentially. The
implementation can instead compute a priori where each process will access the
file and then carry out the I/O for all processes in parallel.

MPI places several restrictions on collective I/O. The most important one,
with regard to ordered mode, is that the application ensure all outstanding inde-
pendent I/O (e.g. shared mode) routines have completed before initiating collec-
tive I/O (e.g. ordered mode) ones. This restriction simplifies the implementation
of the ordered mode routines. However, the standard also states that

in order to prevent subsequent shared offset accesses by the same pro-
cesses from interfering with this collective access, the call might return
only after all the processes within the group have initiated their accesses.
When the call returns, the shared file pointer points to the next etype
accessible.

This statement indicates that the implementation should guarantee that changes
to the shared file pointer have completed before allowing the MPI-IO routine to
return.



Figure 4 outlines our algorithm for ordered mode. Process 0 uses a single
access epoch to get the value of the shared file pointer. Since the value is stored
locally, the operation should complete with particularly low latency. It does not
need to access waitlist at all, because the MPI specification leaves it to the
application not to be performing shared mode accesses at the same time. All
processes can determine, based on their local datatype and count parameters,
how much I/O they will carry out. In the call to MPI Scan, each process adds
this amount of work to the ones before it. After this call completes, each process
knows its effective offset for subsequent I/O. The (N−1)th process can compute
the new value for the shared file pointer by adding the size of its access to the
offset it obtained during the MPI Scan. It performs a one-sided access epoch to
put this new value into sharedfp, again ignoring the waitlist.

To ensure that a process doesn’t race ahead of the others and start doing I/O
before the shared file pointer has been updated, the (N−1)th process performs a
MPI Bcast of one byte after updating the shared file pointer. All other processes
wait for this MPI Bcast, after which they may all safely carry out collective I/O
and then exit the call. If we used an MPI Barrier instead of an MPI Bcast, the
(N − 1)th process would block longer than is strictly necessary.

Process 0 Process 1 through (N minus 2) Process (N minus 1)

Lock
MPI Get

Unlock
MPI Scan MPI Scan MPI Scan

Lock
MPI Put

Unlock
MPI Bcast MPI Bcast MPI Bcast
perform collective I/O perform collective I/O perform collective I/O

Fig. 4. Synchronizing in the ordered mode case. Process 0 acquires the current value
for the shared file pointer. After the call to MPI Scan, process (N − 1) knows the final
value for the shared file pointer after the I/O completes and can MPI Put the new value
into the window. Collective I/O can then be carried out in parallel with all processes
knowing their appropriate offset into the file. An MPI Bcast ensures that the shared
file pointer value is updated before any process exits the call, and imposes slightly less
overhead than an MPI Barrier.

4 Performance Evaluation

We simulated both algorithms (independent and collective) with a test program
that implemented just the atomic update of the shared file pointer value. We
ran tests on a subset of Jazz, a 350-node Linux cluster at Argonne National
Laboratory, using the cluster’s Myrinet interconnect.
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Fig. 5. Average time to perform one update of the shared file pointer.

Earlier in the paper we laid out the requirements for the hidden file approach
to shared file pointers. On Jazz, none of the available clusterwide file systems
meet those requirements. In fact, the NFS volume on Jazz has locking routines
that not only fail to enforce sequential access to the shared file pointer but fail
silently. Thus, we were unable to compare our approach with the hidden file
technique.

This silent failure demonstrates another benefit of the RMA approach: if an
MPI-I/O implementation tests for the existence of RMA routines, it can assume
they work (otherwise the MPI-2 implementation is buggy). Tests for file locks,
especially testing how well they prevent concurrent access, are more difficult,
because such tests would have to ensure not just that the locking routines exist,
but that they perform as advertised across multiple nodes.

4.1 Shared Mode Synchronization

In our simulation, processes repeatedly perform an atomic update of the shared
file pointer in a loop. We measured how long processes spent updating the shared
file pointer and then computed the average time for one process to carry out
one shared file pointer update. Figure 5(a) shows how the number of processes
impacts the average update time and gives an indication of the scalability of our
algorithm.

All the independent I/O routines leave little room for the implementation
to coordinate processes, so when N processes attempt to update the shared file
pointer, we have to carry out O(N) one-sided operations. Only one process can
lock the RMA window at a time. This serialization point will have more of an
impact as the number of processes — and the number of processes blocking —
increases. The shared mode graph in Figure 5(a) confirms linear growth in time
to update the shared file pointer value.



When considering performance in the independent shared file pointer case,
one must bear in mind the nature of independent access. As with all independent
MPI routines, the implementation does not have enough information to optimize
accesses from multiple processes. Also, the simulation provides a worst-case sce-
nario, with multiple processes repeatedly updating the shared file pointer as
quickly as possible. In a real application, processes would perform some I/O
before attempting to update the shared file pointer again.

4.2 Ordered Mode Synchronization

Implementations have more options for optimizing collective I/O, especially
when performing collective I/O with a shared file pointer. As outlined in Sec-
tion 3.2, N processes need only perform two access epochs — one for reading
the current shared file pointer value, one for writing the updated value — from
two processes. Our algorithm does use two collective routines (MPI Scan and
MPI Bcast), so we would expect to see roughly O(log(N)) increase in time to
update the shared file pointer using a quality MPI implementation. Figure 5(a)
compares update time for the ordered mode algorithm with that of the shared
mode algorithm. The ordered mode algorithm scales quite well and ends up be-
ing hard to see on the graph. Figure 5(b) shows the average update time for just
the ordered algorithm. The graph has a log scale X axis, emphasizing that the
ordered mode algorithm is O(log(N)).

5 Conclusions and Future Work

We have outlined two algorithms based on MPI-2 one-sided operations that an
MPI-IO implementation could use to implement the shared mode and ordered
mode routines. Our algorithms rely solely on MPI communication, using one-
sided, point-to-point, and collective routines as appropriate. This removes any
dependency on file system features and makes shared file pointer operations an
option for all file systems. Performance in the shared mode case scales as well as
can be expected, while performance in the ordered mode case scales very well.

We designed the algorithms in this paper with an eye toward integration into
ROMIO. At this time, one-sided operations make progress only when the target
process hosting the RMA window is also performing MPI communication. We
will have to add a progress thread to ROMIO before we can implement the shared
file pointer algorithms. In addition to their use in ROMIO, the primitives used
could be made into a library implementing test-and-set or fetch-and-increment
for other applications and libraries.

The simulations in this paper focused on relatively small numbers of pro-
cessors (128 or less). As the number of processors increases to thousands, we
might need to adjust this algorithm to make use of a tree. Leaf nodes would
synchronize with their parents before acquiring the shared file pointer. Such an
approach reduces contention on the process holding the memory windows, but
it also introduces additional complexity.



Our synchronization routines have been used for MPI-IO atomic mode as
well as MPI-IO shared file pointers. In future efforts we will look at using these
routines to implement extent-based locking and other more sophisticated syn-
chronization methods.
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